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Soil Moisture Affects Growing-Season Wildfire  
Size in the Southern Great Plains

Soil Physics & Hydrology

The increasing availability of soil moisture data presents an opportunity for 
its use in wildfire danger assessments, but research regarding the influence 
of soil moisture on wildfires is scarce. Our objective was to identify relation-
ships between soil moisture and wildfire size for Oklahoma wildfires during the 
growing (May-October) and dormant seasons (November-April). We hypoth-
esized that soil moisture influences wildfire size when vegetation is growing 
but is less important when most vegetation is dead or dormant. Soil moisture, 
as fraction of available water capacity (FAW), and commonly measured weath-
er variables were determined for 38,419 wildfires from 2000–2012. Wildfires 
were grouped by size class (<4.05, ³4.05 and <40.5, ³40.5 and <121, ³121 
and <405, and ³405 ha), and the Kruskal–Wallis test with multiple compari-
sons was used to identify differences in each variable between wildfire size 
classes and seasons. Large fires occurred at lower FAW than small fires during 
both seasons (P < 0.001), but growing-season wildfires ³405 ha occurred over 
a narrow range of FAW (0.05–0.46) whereas dormant-season fires of this size 
occurred across the entire range of FAW (0.05–1.05). For growing-season fires 
³ 121 ha, 91% occurred at FAW < 0.5 and 77% occurred at FAW < 0.2. Our 
finding that large growing-season wildfires occurred exclusively under condi-
tions of low soil moisture highlights the need to develop methods to use soil 
moisture data in wildfire danger assessments.

Abbreviations: AWC, available water capacity; FAW, fraction of available water capacity; 
KBDI, Keetch-Byram Drought Index; LFM, live fuel moisture; PAW, plant available water.

Innovative approaches to assessing wildfire danger may help increase wildfire 
preparedness and reduce the negative impacts that wildfires have on humans. 
While wildfires are a natural and necessary feature of most terrestrial ecosys-

tems, their impact on human life and property can be dramatic, and the costs as-
sociated with wildfires can be high. In the USA, wildfire suppression costs have 
approached $2 billion USD annually (NIFC, 2013), and the occurrence of large 
wildfires is increasing (Westerling et al., 2006).

One possible approach to improving wildfire danger assessments involves us-
ing soil moisture as a surrogate for live fuel moisture (LFM), a key influence on 
fire behavior (Yebra et al., 2013). Soil moisture may be a useful surrogate because 
it is physically linked to LFM through soil–plant interactions (Hillel, 1998). Large 
wildfires tend to occur during dry and windy periods with low relative humidity 
(Reid et al., 2010) and high temperatures (Littell et al., 2009), conditions that 
reduce fuel moisture and promote fire ignition and spread (Van Wagner, 1977; 
Bradshaw et al., 1983; Rothermel, 1983; Forestry Canada Fire Danger Group, 
1992). However, direct measurements of LFM for the purposes of wildfire danger 
assessment are not widely available because fuel moisture sampling is labor inten-
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sive. Instead, LFM, and consequently wildfire danger, are estimat-
ed from weather data (Bradshaw et al., 1983; Forestry Canada 
Fire Danger Group, 1992; Viegas et al., 2001; Castro et al., 2003; 
Carlson et al., 2007; Dennison et al., 2008; Matthews, 2014), 
related to drought indices (Dimitrakopoulos and Bemmerzouk, 
2003; Pellizzaro et al., 2007), or estimated using satellite remote 
sensing techniques (Chuvieco et al., 2002; Caccamo et al., 2012; 
Jurdao et al., 2012).

Wildfire danger assessments that incorporate soil moisture 
may improve existing techniques because the necessary LFM 
estimates would be grounded on physical interactions between 
soils and plants. Pellizzaro et al. (2007) provided evidence for the 
importance of soil moisture when they reported that soil mois-
ture was more highly correlated with LFM than weather vari-
ables or drought indices in some plant species. Likewise, Qi et al. 
(2012) found that in situ soil moisture measurements were more 
strongly correlated with LFM than were remote sensing mea-
surements. However, the soil moisture–LFM correlations were 
site specific in part because of spatial variability in soil properties. 
Their results highlight that soil moisture per se is an incomplete 
description of soil water status because soil physical properties 
such as texture and porosity dictate how much moisture is avail-
able for plant uptake, that is, plant available water (PAW). The 
maximum PAW that a soil can store, or available water capacity 
(AWC), varies greatly across soils. Therefore, a more meaningful 
soil moisture variable can be defined as the ratio of PAW/AWC, 
or FAW. Because it accounts for the impact of soil properties on 
moisture available to vegetation, FAW is a preferred means of es-
timating plant water stress from soil moisture (Allen et al., 1998).

In situ soil moisture data have not been used for wildfire 
danger assessment, and data relating measured soil moisture to 
wildfire occurrence are lacking. A significant roadblock to the 
use of soil moisture in wildfire research as well as operational fire 
danger rating systems such as the OK-FIRE system in Oklahoma 
(Carlson, 2010; Joint Fire Science Program, 2011) has been the 
absence of data, but the recent proliferation of large-scale soil 
moisture monitoring networks (Ochsner et al., 2013) has made 
soil moisture data more widely available. One such network is the 
Oklahoma Mesonet where soil moisture and weather variables 
are recorded at >100 sites across Oklahoma, USA (McPherson 
et al., 2007). These soil moisture data have been used for drought 
probability assessment related to crop production (Torres et al., 
2013), with similar drought assessments being conducted else-
where in the United States (Hunt et al., 2009) and internation-
ally (Mozny et al., 2012) where soil moisture data are available.

We hypothesize that soil moisture is an important driver of 
wildfires during the growing season (May-October in Oklahoma) 
when it strongly influences LFM (Pellizzaro et al., 2007), and that 
soil moisture is less important during the dormant season when 
vegetation has senesced or is dormant. Soil moisture is often at 
its maximum during the dormant season because of low evapo-
rative demand, yet at the same time fuel moisture is low because 
vegetation is primarily dehydrated plant material from the previ-
ous growing season (Wittich, 2011). Weather variables that dic-

tate dead fuel moisture (i.e., relative humidity and temperature) 
and drive wildfire spread (i.e., wind speed; Bradshaw et al., 1983; 
Nelson, 2000) are likely dominant drivers of dormant-season 
wildfires in Oklahoma. Our objective was to identify relationships 
between soil moisture and wildfire size for Oklahoma wildfires 
during the growing and dormant seasons. Our goal was to answer 
the fundamental but so far unanswered question, how is wildfire 
size related to soil moisture? To provide context, we also assessed 
relationships between commonly measured weather variables and 
wildfire size and identify seasonal differences in wildfire number 
and extent. This fundamental work is directed toward improving 
our understanding of the influence that soil moisture has on wild-
fire size, and it is an essential first step toward developing wildfire 
danger assessments that include soil moisture.

MATERIALS AND METHODS
Study Area

The climate of Oklahoma is continental, with statewide av-
erage monthly air temperatures ranging from 3°C in January to 
27°C in July. More precipitation occurs during the growing season 
from May through October (573 mm) than during the dormant 
season from November through April (369 mm; SCIPP, 2014). 
Temperature and precipitation also vary geographically, with both 
increasing from the northwest to the southeast. Average annual 
temperature ranges from 13°C in the northwestern part of the 
state to 17°C in the south and southeast, while precipitation ranges 
from 432 to 1422 mm from northwest to southeast (OCS, 2014). 
Annual precipitation totals can vary greatly, and drought lasting 
from months to years is a recurring part of Oklahoma’s climate 
(Stockton and Meko, 1983). The climate gradient of Oklahoma is 
a primary contributor to its diverse ecology, with parts of 12 U.S. 
Environmental Protection Agency (EPA) Level III ecoregions be-
ing present in the state (Woods et al., 2005). The Central Great 
Plains and Cross Timbers ecoregions are the largest, making up 
40 and 19% of the state’s land area, respectively. According to the 
2011 National Land Cover Database, 72% of Oklahoma’s veg-
etated land cover is made up of herbaceous plants, including grass-
lands (40% of vegetated area), cultivated crops (20%), and pasture 
(12%). Of the remaining vegetated area, 23% is forest, and 5% is 
scrub (Homer et al., 2015).

Wildfire Data
Wildfire data were obtained from the Oklahoma State Fire 

Marshal’s Office for the Years 2000–2012, with data including 
date of fire ignition, area burned, and responding fire department. 
Prescribed fires were not included in the data set. Descriptions of 
vegetation type were available for only a portion of the wildfire 
data set (2008–2012). Of the 20,929 fires from 2008–2012, 
the most common types were “grass fire” (61%), “brush or 
brush/grass fires” (26%), and “forest, woods, or wildland fire” 
(5%). Assuming that wildfire types for the 2008–2012 subset of 
the data were representative of the data set as a whole, the per-
centage of forest fires in the entire data set was relatively small. 
Therefore, our results apply primarily to grass and brush/grass 
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fires. It was impossible to conduct separate statistical analyses for 
fires from each vegetation type because vegetation descriptions 
were not available for the entire data set. Furthermore, 30-m land 
cover data for Oklahoma shows that vegetation in Oklahoma is 
highly spatially variable (Homer et al., 2015). Consequently, 
large fires typically burn across multiple vegetation types and 
cannot be neatly categorized by a single vegetation type.

Fires were separated by dormant and growing season for 
separate seasonal analyses. The dormant season was defined as the 
months of November through April, which approximately corre-
sponds with the months after vegetation has senesced and before 
substantial spring regrowth (Senay and Elliott, 2000). The grow-
ing season was defined as the months of May through October. 
Fire number and area burned were compared for each season 
and year to identify seasonal differences. Dormant-season data 
represent those fires from the season ending in the specified year. 
Therefore, dormant-season data from 2000 were excluded since 
they represent only a portion of that dormant season. The analy-
sis was based on the fire data as received, with the knowledge that 
they may be incomplete and may contain inaccurate estimates of 
burn area, as is common with wildfire data (Brown et al., 2002). 
Results were checked using Oklahoma fires from a similar federal 
data set (Short, 2013), and the results were essentially unchanged.

Environmental Data
Daily environmental data were obtained from the 

Oklahoma Mesonet for each station from 1996 to 2012. 
Environmental data included maximum air temperature, mini-
mum relative humidity, maximum wind speed (measured at 
10 m), and reference temperature difference (Illston et al., 2008) 
from heat dissipation sensors (Model 229, Campbell Scientific 
Inc., Logan, UT) at the 5- and 25-cm soil depths. The reference 
temperature difference was converted to soil matric potential us-
ing a calibration function (Illston et al., 2008). Volumetric water 
content was then calculated from soil matric potential using van 
Genuchten parameters obtained from the Rosetta pedotransfer 
function. The necessary parameters were derived from soil water 
retention properties measured on soil samples collected at each 
Mesonet station location (Scott et al., 2013). Reference tempera-
ture difference data are available at the Oklahoma Mesonet Daily 
Data Retrieval webpage https://www.mesonet.org/index.php/
weather/daily_data_retrieval subject to the Oklahoma Mesonet 
Data Access Policy (verified 14 Oct. 2015). The soil water reten-
tion database is available at http://soilphysics.okstate.edu/data/ 
(verified 14 Oct. 2015).

At each Mesonet site, air temperature, relative humidity, 
and wind speed were measured continuously, and 5-min averages 
were recorded. Reference temperature difference was measured 
every 30 min. In our analysis, maximum air temperature, mini-
mum relative humidity, and maximum wind speed were respec-
tive maximum and minimum 5-min averages for each day, and 
soil moisture was calculated from daily average reference tem-
perature difference.

At a given soil moisture content, soils can vary in the 
amount of water available to growing vegetation. Therefore, 
soil moisture alone does not provide a complete description of 
soil water status. Instead, soil moisture conditions are better de-
scribed by PAW:

( )WPPAW  dq q= −  [1]

where q is measured volumetric water content, qWP is volumet-
ric water content at the permanent wilting point, and d is the 
thickness (mm) of the layer represented by the measurement. 
Permanent wilting point, the water content at which plants can-
not remove additional water from the soil profile, was defined as 
the volumetric water content corresponding to a matric potential 
of -1500 kPa.

Mesonet sites vary greatly in maximum PAW, or AWC, with 
values in the top 400 mm of the soil profile ranging from 20 mm 
for a sandy loam to 70 mm for a clay to 113 mm for a silt loam. 
Available water content is calculated as (qFC−qWP)d where qFC 
is the field capacity. Based on visual inspection of matric poten-
tial data, field capacity, the water content at which drainage of 
water from the soil becomes negligible, was defined as the wa-
ter content corresponding to a matric potential of -10 kPa. To 
normalize PAW across sites, FAW was calculated as the ratio of 
PAW/AWC:

WP FC WPFAW (  )/(   )q q q q= − −  [2]

where FAW is fraction of available water capacity. In this study, 
FAW was calculated for the 0- to 10-cm layer using the data from 
the soil moisture sensor at 5 cm and for the 10- to 40-cm layer 
using the data from the soil moisture sensor at 25 cm. Then the 
depth-weighted average FAW for the 0- to 40-cm layer was cal-
culated. Soil moisture below 40 cm was not considered because 
only 76 Mesonet stations have sensors below this depth.

Values of FAW are typically between 0 (no PAW) and 1 
(maximum PAW) as q varies from permanent wilting point to 
field capacity. Values of FAW less than approximately 0.5 indi-
cate conditions of vegetative moisture stress (Allen et al., 1998). 
Values of FAW greater than one are possible for poorly drained 
sites and during or shortly after precipitation events when soil 
moisture is above field capacity. Under prolonged hot and dry 
conditions, evaporation from near-surface soil layers can result 
in moisture below permanent wilting point and FAW values less 
than zero.

Relating Environmental Conditions to  
Wildfire Size Class

Wildfires were assigned to one of five fire size classes rang-
ing from <4.05 ha (fire size Class 1) to ³405 ha (fire size Class 
5; Table 1). Size classes were modeled after National Wildfire 
Coordinating Group (NWCG) standards (NWCG, 2012). 
Fires in size Class 1 include NWCG Classes A and B, and fires 
in size Class 5 include NWCG Classes F and larger. Size Classes 

https://www.mesonet.org/index.php/weather/daily_data_retrieval
https://www.mesonet.org/index.php/weather/daily_data_retrieval
http://soilphysics.okstate.edu/data/???verify
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2, 3, and 4 correspond to NWCG Classes C, D, and E, respec-
tively. Environmental data for each fire were assigned for the day 
of fire ignition from the Mesonet station nearest the address of 
the responding fire department. Data from the next nearest sta-
tion were used to fill missing soil moisture data when necessary 
because soil moisture is recorded at only 105 of Oklahoma’s 120 
Mesonet stations (Illston et al., 2008). No attempt was made to 
fill any remaining missing environmental data, and data existed 
for 96% of fires.

The non-parametric Kruskal–Wallis test was used to iden-
tify differences in environmental conditions between wildfire-
size classes and seasons. The Kruskal–Wallis test is similar to the 
parametric analysis of variance but is performed on data ranks 
rather than data values, is not restricted by the assumption of 
normality, and is appropriate for ordinal data sets (Kruskal and 
Wallis, 1952) like our wildfire size classes. A significant Kruskal–
Wallis test result indicates that the sample population distribu-
tion of at least one sample differs from another. Strictly speak-
ing, the Kruskal–Wallis test assumes variance homogeneity of 
ranks between samples (Vargha and Delaney, 1998), and there 
is some increased risk of Type I error when this assumption is 
violated. We tested variance of data ranks for homogeneity using 
the Brown-Forsythe test (Brown and Forsythe, 1974) and found 

that the assumption was violated for all environmental variables 
in our data set. However, given the large sample sizes in each 
wildfire size class and the drastically different environmental 
conditions between seasons and between size classes, we expect 
the likelihood of Type I error is low. Significant differences (P 
< 0.001) were identified by the Kruskal–Wallis procedure for 
all variables, so post-hoc pairwise multiple comparisons of data 
ranks were performed to determine which samples differed from 
others. The Bonferroni method was used for multiple compari-
sons because it is appropriate for samples with unequal variances 
(Sidak, 1967). Results of within-season multiple comparisons on 
data ranks are presented in Table 2. For clarity, comparisons be-
tween seasons were excluded from the table, but these compari-
sons can be found in the box and whisker plots described below.

Visual summaries of data values for environmental condi-
tions from each wildfire size class and season are presented us-
ing box and whisker plots. Each box depicts the 25th, 50th 
(median), and 75th percentile values, with the range of the data 
represented with whiskers. Maximum whisker length was calcu-
lated as 1.5 times the interquartile range (75th percentile–25th 
percentile; Frigge et al., 1989). Any data points beyond the whis-
kers were considered outliers and displayed as individual points. 
Confidence intervals on the medians are represented with 
notches on each box, with notch locations calculated as

 1 .57(  )RM
n

±
√

 [3]

where M is the median, R is the interquartile range, and n is 
the number of samples (McGill et al., 1978). If notches do not 
overlap, median data values are roughly significantly different 
at the 95% confidence level (McGill et al., 1978). Comparisons 
using notches are less rigorous than the Kruskal–Wallis analysis 
and multiple comparisons, but the plots are a useful means of 
presenting the data and allow between season comparisons. All 

Table 1. Size class and number (n) of dormant-season 
(November– April) and growing-season (May– October) wild-
fires in Oklahoma from 2000 to 2012.

 Fire season

Fire size class Fire size Dormant Growing Total

ha ––––––––––n––––––––––
5  ³405 181 70 251

4  ³121 and <405 465 124 589

3  ³40.5 and <121 1096 342 1438

2  ³4.05 and <40.5 6688 3162 9850

1  <4.05 16102 10189 26291
Total 24532 13887 38419

Table 2. Minimum, maximum, and median daily values of fraction of available water capacity (FAW), maximum air temperature, 
minimum relative humidity, and maximum wind speed for fires in each size class for Oklahoma wildfires from 2000–2012. The 
Kruskal–Wallis test was significant (P < 0.0001) for all variables. Letter designations for significant differences between median 
values are for post-hoc multiple comparison tests on data ranks.

FAW Maximum air temperature Minimum relative humidity Maximum wind speed

Size class Min Max Med† Min Max Med Min Max Med Min Max Med
–––––––––––unitless–––––––––– ––––––––––°C–––––––––– ––––––––––%–––––––––– –––––––––m s-1–––––––––

Dormant Season

5 0.05 1.05 0.65 a 0.4 34.1 23.4 a 4.8 66.6 16.3 a 4.2 19.5 10.9 a

4 0.06 1.03 0.84 b -2.8 37.0 21.7 b 4.3 76.1 21.9 b 2.8 22.7 9.5 b

3 0.06 1.03 0.89 c -3.8 36.5 20.7 c 4.9 86.4 25.3 c 2.7 21.8 8.8 c

2 0.05 1.05 0.90 cd -7.9 37.2 19.6 d 4.9 91.5 27.0 d 1.8 23.9 8.3 d

1 0.00 1.05 0.91 d -10.8 37.8 18.2 e 4.9 96.7 28.6 e 1.9 23.9 7.8 e

Growing Season

5 0.05 0.46 0.11 a 19.9 45.5 40.8 a 3.4 38.6 18.3 a 4.8 18.0 8.6 a

4 0.04 0.98 0.13 ab 19.1 44.3 38.6 b 12.3 55.9 21.8 ab 3.4 17.3 7.6 abc

3 0.00 1.02 0.14 b 12.2 45.1 37.2 b 7.3 70.8 24.3 b 2.8 19.0 7.7 b

2 0.00 1.03 0.18 c 10.0 46.1 35.0 c 6.6 90.2 27.4 c 1.9 20.9 7.1 c
1 0.00 1.07 0.25 d 9.2 45.7 33.9 d 3.5 92.9 30.3 d 1.9 23.3 6.5 d
†  For a given season, median values followed by different letters are significantly different (P < 0.05) based on the Bonferroni multiple comparison 

test on ranks. Median data values are shown for clarity.
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statistical analyses were conducted with Matlab R2012a (The 
MathWorks, Inc., Natick, MA).

RESULTS
After significant seasonal and size class differences for FAW 

were identified (Kruskal–Wallis, P < 0.001), multiple com-
parisons confirmed that large fires occurred at lower FAW than 
smaller fires for both growing and dormant seasons (Table 2). 
The median FAW for the largest growing-season wildfires (size 
Class 5, ³405 ha) was 0.11, indicating extremely low soil mois-
ture levels and severe plant water stress. These size Class 5 wild-
fires occurred over a narrow range of FAW (0.05–0.46) relative 
to the range of FAW for all growing season fires (0.0–1.07; Fig. 
1). The range of FAW for dormant-season size Class 5 fires was 
0.05 to 1.05, which is nearly the entire range of FAW for all fires, 
and median FAW was 0.65, above the 0.5 threshold for moisture 
stress in plants (Allen et al., 1998). Unlike large fires, small fires 
occurred across the entire range of possible FAW values even dur-
ing the growing season.

Growing-season wildfires ³121 ha rarely occurred when 
FAW was above 0.5, and most occurred below a threshold FAW 
of about 0.2 (Fig. 2). During the growing season, 91% (159 of 
174 fires with soil moisture data) of fires ³121 ha (size Classes 4 
and 5) occurred at FAW < 0.5, and 77% (134 of 174) occurred 
at FAW < 0.2 (Fig. 2). The strong relationship between low 
FAW and wildfire occurrence in the growing season is further 
illustrated by examining statewide average FAW for high and 
low wildfire years. For 2012, when growing-season wildfire ex-
tent was greatest (93,043 ha), statewide average FAW was well 

below average during most of the growing season, while in 2007, 
a year of low growing-season wildfire extent (3214 ha), FAW was 
generally above average (Fig. 3). In 2012, FAW was below 0.5 
early in the growing season and was near or below 0.2 for most of 
July and August, with these months respectively accounting for 
21% (19,539 ha) and 77% (71,643 ha) of total growing-season 
wildfire area burned that year (data not shown).

Large growing and dormant-season wildfires occurred 
at higher maximum air temperatures (Kruskal–Wallis test P < 
0.001), lower minimum relative humidity (P < 0.001), and high-
er maximum wind speeds (P < 0.001; Table 2) than small fires. 
Minimum relative humidity varied over a narrow range for grow-

Fig. 1. Fraction of available water capacity (FAW) for fires in wildfire 
size Classes 1 (smallest) through 5 (largest) during the dormant season 
(dark gray boxes) and growing season (light gray boxes) for Oklahoma 
wildfires from 2000–2012. Median values are the black lines near the 
middle of each box, and notches are 95% confidence intervals on the 
medians. Median values are roughly significantly different (P < 0.05) 
if notches do not overlap. The 25th and 75th percentile values are the 
left and right sides of boxes, respectively; the data range excluding 
outliers is indicated by whiskers extending from each box; and outliers 
are individual points. All growing season size Class 5 fires (³405 ha) 
occurred at FAW < 0.5 and the great majority occurred at FAW < 0.2.

Fig. 2. Frequency distribution of fraction of available water capacity 
(FAW) for growing-season wildfires in size Class 4 (³121 and <405 ha) 
and 5 (³405 ha) combined in Oklahoma from 2000–2012. Most fires 
(159 of 174 fires for which soil moisture data were available) occurred 
at FAW < 0.5, with some occurring under severe drought (22 fires) and 
most occurring under extreme drought (134 fires).

Fig. 3. Oklahoma statewide average growing-season fraction of 
available water capacity (FAW) during a year of low wildfire 
occurrence and area in the growing season (2007, 3214 ha), a year 
of high wildfire occurrence and area in the growing season (2012, 
93043 ha), and the long term mean FAW (1996–2012). In 2012, FAW 
was well below average much of the growing season including the 
peak wildfire months of July and August, whereas FAW in 2007 was 
nearly always greater than average.
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ing-season size Class 5 fires (3.4–38.6%) relative to all other size 
classes (3.5–92.9%). For large dormant-season fires, the range 
of each weather variable was small relative to its respective pos-
sible range, unlike FAW which varied across its entire range even 
for large fires. For example, minimum relative humidity ranged 
from 4.8 to 66.6% for size Class 5 fires, while the range for all 

dormant season fires was 4.3 to 96.7% (Table 2). For dormant 
season size Class 5 fires, the median minimum relative humid-
ity (16%) and maximum wind speed (10.9 m s-1) were consis-
tent with National Weather Service (NWS, 2015) criteria for 
Rangeland or Grassland Fire Danger Statements, which include 
relative humidity £ 20% and wind speed ³ 10.3 m s-1 (adjusted 
to 10-m measurement height [Turner and Lawson, 1978]). This 
is in direct contrast with FAW, for which the median value (0.65) 
for dormant-season size Class 5 fires suggested adequate soil 
moisture. In general, the range of conditions over which wildfires 
occurred was greater during the dormant season than growing 
season for all variables.

Typical of the climate of Oklahoma, FAW, maximum air 
temperature, and maximum wind speed varied greatly by season, 
with FAW (Fig. 1) and wind speed (Fig. 4 ) being lower dur-
ing the growing season and temperature being higher (Fig. 5). 
Minimum relative humidity did not show the seasonality of the 
other variables, with seasonal differences in median values occur-
ring only for the smallest wildfires (size Class 1; Fig. 6). In gen-
eral, relative humidity does not demonstrate the same seasonal 
variability as other variables, with minimum relative humidity 
averaging 41 and 40% for all days during the dormant and grow-
ing seasons, respectively.

Dormant-season fires outnumbered growing-season fires 
for all fire size classes (Table 1). Wildfire number and area were 
generally greater during the dormant season than growing season 
each year, with the exception of 2012 when growing-season wild-
fire area was much larger than area burned in the dormant season 
(Fig. 7). Over the 13-yr data record, 36% of wildfires and 30% 
of area burned occurred during the growing season, but recently, 

Fig. 5. Maximum daily air temperature for fires in wildfire size Classes 
1 (smallest) through 5 (largest) during the dormant season (dark gray 
boxes) and growing season (light gray boxes) for Oklahoma wildfires 
from 2000–2012. Median values are the black lines near the middle of 
each box, and notches are 95% confidence intervals on the medians. 
Median values are roughly significantly different (P < 0.05) if notches 
do not overlap. The 25th and 75th percentile values are the left and 
right sides of boxes, respectively; the data range excluding outliers 
is indicated by whiskers extending from each box; and outliers are 
individual points.

Fig. 6. Minimum daily relative humidity for fires in wildfire size 
Classes 1 (smallest) through 5 (largest) during the dormant season 
(dark gray boxes) and growing season (light gray boxes) for Oklahoma 
wildfires from 2000–2012. Median values are the black lines near the 
middle of each box, and notches are 95% confidence intervals on 
the medians. Median values are roughly significantly different (P < 
0.05) if notches do not overlap. The 25th and 75th percentile values 
are the left and right sides of boxes, respectively; the data range 
excluding outliers is indicated by whiskers extending from each box; 
and outliers are individual points.

Fig. 4. Maximum daily wind speed for fires in wildfire size Classes 1 
(smallest) through 5 (largest) during the dormant season (dark gray 
boxes) and growing season (light gray boxes) for Oklahoma wildfires 
from 2000–2012. Median values are the black lines near the middle of 
each box, and notches are 95% confidence intervals on the medians. 
Median values are roughly significantly different (P < 0.05) if notches 
do not overlap. The 25th and 75th percentile values are the left and 
right sides of boxes, respectively; the data range excluding outliers 
is indicated by whiskers extending from each box; and outliers are 
individual points.
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growing season fires have been more numerous and widespread. 
From 2000–2010, 32% of fires and 16% of area burned occurred 
during the growing season, but during the severe drought years 
of 2011 and 2012, growing-season fire number and area burned 
were 51 and 70% of the total, respectively.

DISCUSSION
The physical link between soil moisture and LFM and the 

increasing availability of data make soil moisture a strong can-
didate variable for wildfire research. Our primary goal was to 
answer the fundamental question, how is wildfire size related to 
soil moisture? We hypothesized that soil moisture, expressed as 
FAW, is an important driver of wildfires during the growing sea-
son when plants are actively growing but is less important during 
the dormant season when most plants are dead or dormant. We 
found that FAW is strongly related to wildfires during the grow-
ing season, with the largest fires occurring almost exclusively at 
low FAW. During the dormant season, large fires generally oc-
curred at lower FAW than smaller fires, but unlike during the 
growing season, large dormant-season fires occurred even under 
conditions of high soil moisture.

The narrow range of FAW over which size class 5 (³405 ha) 
growing-season wildfires occurred is remarkable, especially given 
the spatial variability of soil moisture and the influence other 
factors such as weather, ignition source, fuel characteristics, and 
suppression efforts have on wildfire occurrence and size. All size 
Class 5 fires occurred at FAW < 0.5, the threshold below which 
moisture stress in plants generally occurs (Allen et al., 1998), and 
87% of fires occurred when FAW was <0.2 (Fig. 2). The FAW 
derived Soil Moisture Index has been used to assess drought con-
ditions in agricultural settings (Sridhar et al., 2008; Hunt et al., 

2009), with FAW < 0.4 being classified as severe drought and 
FAW < 0.2 being extreme drought (Sridhar et al., 2008). Based 
on these criteria, size Class 5 fires (³405 ha) were nearly always 
associated with extreme drought (Fig. 1), and extreme drought 
conditions existed for most (77%) fires in size Classes 4 and 5 
combined (³121 ha; Fig. 2). This strong relationship is a con-
sequence of the direct influence that soil moisture has on grow-
ing plants. When soil moisture is sufficient, LFM is high and 
flammability is low, but as soil moisture decreases, so does LFM 
(Pellizzaro et al., 2007), with vegetation eventually transitioning 
from heat sink to heat source (Cohen and Omi, 1991). The im-
pact of soil moisture on LFM may be especially important for 
vegetation prone to fluctuations in moisture content (Pellizzaro 
et al., 2007), including rangeland and pasture.

While FAW < 0.2 was a common characteristic for the 
great majority of large growing-season wildfires in this data set, 
it was not absolute. For example, a 2833-ha fire occurred near 
Guymon, OK on 24 May 2011 when FAW was 0.36, maximum 
air temperature was high (31°C), and relative humidity (11%) 
and maximum wind speed (17 m s-1) were near their respective 
extremes (Fig. 4 and 6). For this fire, weather conditions were 
likely the dominant drivers in already moisture stressed vegeta-
tion. The impact weather has on wildfire occurence is well estab-
lished (Littell et al., 2009; Reid et al., 2010), and is supported by 
significant relationships between weather variables and wildfire 
size during both the growing and dormant seasons in our study. 
Each of our measured variables explains a portion of the mecha-
nism driving interactions at the soil-fuel-atmosphere interface. 
For example, higher air temperature speeds fuel drying and sup-
ports wildfire ignition and propagation, wind aids fuel drying 
and drives fire spread, and relative humidity controls moisture 
of senesced plants. Large growing-season wildfires resulted from 
additions of dead fuel because of low soil moisture, low relative 
humidity reducing moisture of dead fuel, and high winds driving 
fire spread.

Some large growing season fires occurred when FAW was in 
the midst of rapid change. In one instance, a 405-ha fire occurred 
near Dewar, OK on 29 July 2012 when FAW was 0.46 (Fig. 1), 
but 37 mm of precipitation 3 d before fire ignition relieved a pe-
riod of more than 6 wk when FAW < 0.2. This prolonged period 
of extreme drought likely led to senescence of vegetation, after 
which increased soil moisture had little impact on fuel moisture, 
and weather variables dictated moisture of dead fuels and wild-
fire spread (Bradshaw et al., 1983; Nelson, 2000). This example 
suggests that wildfire danger can be high after long drought pe-
riods during the growing season even after near surface moisture 
deficits are replenished. Including soil moisture data from below 
40 cm might be beneficial in this context by effectively increasing 
the “memory” of the soil moisture data.

Other fires occurred at the onset of “flash droughts”. Flash 
droughts are short-term severe events characterized by mois-
ture deficits and abnormally high air temperatures (Senay et al., 
2008), lasting no less than 3 wk, and characterized by a FAW de-
crease of at least 0.5 (Hunt et al., 2009). For example, an 809-ha 

Fig. 7. Growing-season and dormant-season wildfire number and area 
burned (in thousands of ha) for wildfires in Oklahoma from 2000–
2012. Dormant season is from November through April ending the 
indicated year.
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fire occurred near Waynoka, OK on 5 Sept. 2010 when FAW 
was 0.32. Two weeks prior, FAW was 1.0 and steadily decreased 
to <0.2 several days after fire occurrence, where it remained for 
nearly 8 wk. In agricultural settings, it has been suggested that 
this rapidly declining soil moisture should inform producers of 
impending drought (Mozny et al., 2012). Similarly, the onset of 
flash drought could trigger an alert for the increased wildfire po-
tential in wildfire danger assessments. Finally, FAW < 0.4 early in 
the growing season may be an early warning sign of high wildfire 
danger later in the year, as was the case in 2012 (Fig. 3). Similarly, 
low soil moisture at the beginning of the growing season has 
been suggested as an early warning sign of negative drought im-
pacts on crops later in the growing season (Hunt et al., 2009).

Fires that occurred early or late in the growing season were 
less dependent on FAW, likely because plant phenology was 
more important to fuel moisture than was soil moisture. Six 
growing-season size-Class 4 fires occurred with FAW > 0.8 (Fig. 
1), moisture levels that approached field capacity and that were 
near optimum for plant growth. Of these, four occurred on or 
after 23 September and one occurred on 14 May. These fires 
occurred outside of the period of peak greenness for vegetation 
in Oklahoma (Senay and Elliott, 2000), and it is likely that fu-
els were, at least partially, dead remnants of the previous year’s 
growth (spring fires) or mature vegetation from the current year 
(fall fires; Wittich, 2011). Dimitrakopoulos and Bemmerzouk 
(2003) successfully used the Keetch-Byram Drought Index 
(KBDI) to predict LFM from June through August, but found 
that relationships were poor in May and September when plant 
phenology dictated fuel moisture. These results suggest that the 
growing season FAW-wildfire size relationship is strongest dur-
ing June, July, and August, the times of peak vegetative greenness 
in Oklahoma (Senay and Elliott, 2000).

Similarly, plant phenology also explains the occurrence of 
large dormant-season wildfires when FAW was high. Vegetation 
on these landscapes is primarily dead or dormant during the cool 
part of the year, with senescence beginning in early October and 
spring regrowth reaching its maximum in June (Senay and Elliott, 
2000). During the dormant season, weather variables dictate wild-
fire occurrence and size because fuels are dominated by the dead 
fine fuel that drives ignition and energy release during combus-
tion, with dead fuel moisture being dictated primarily by air tem-
perature, relative humidity, and precipitation while wildfire spread 
is influenced mostly by wind speed (Bradshaw et al., 1983).

Nonetheless, large dormant-season wildfires occurred at sig-
nificantly lower FAW than small fires, likely in part because of 
the influence soil moisture has on live fuels during the dormant 
season. For example, leaf moisture content of eastern redcedar 
trees decreases as soil moisture decreases, even during the dor-
mant season (Engle et al., 1987). Reduced leaf moisture content 
increases eastern redcedar flammability (Weir and Scasta, 2014) 
and therefore wildfire probability (Ursino and Rulli, 2011). The 
dormant-season soil moisture–wildfire relationship may also have 
resulted because of the onset of spring regrowth before the end of 
our defined dormant season. Spring regrowth generally begins in 

March (Senay and Elliott, 2000) and could be inhibited by low 
FAW during this period, resulting in a lower proportion of live fu-
els and increased wildfire probability. Furthermore, the moisture 
of long lag-time dead fuels (i.e., 100-h and 1000-h fuels) decreases 
during drought (Bradshaw et al., 1983). Our observed relation-
ship between low soil moisture and large dormant season wildfires, 
where 100-h and 1000-h fuels are involved, may therefore in part 
be explained by the low dead fuel moisture of these fuels, which 
coincides with low soil moisture during drought.

Our results suggest that growing-season wildfire danger as-
sessments may be improved by including soil moisture data in 
the absence of LFM data. Moisture modeling in dead fuels is well 
refined, and wildfire danger assessments during the dormant sea-
son when fuels are primarily dead are well established (Carlson et 
al., 2007). In contrast, LFM modeling and current understand-
ing of wildfire behavior in live fuels is lacking, which hinders 
growing-season wildfire danger assessment ( Joint Fire Science 
Program, 2009). Often, estimates of soil moisture like KBDI 
are used as surrogates for LFM, such as in the United States 
Forest Service Wildland Fire Assessment System (Wildland Fire 
Assessment System, 2013). In Oklahoma, KBDI is a component 
of the Oklahoma Fire Danger model, an operational tool for 
fire danger rating designed to assist fire managers with assessing 
fire danger across Oklahoma (Carlson et al., 2002; Carlson and 
Burgan, 2003). In some cases, soil moisture measurements have 
been shown to be more strongly correlated to LFM than soil 
moisture estimates such as KBDI (Pellizzaro et al., 2007). The 
importance of reliable growing-season wildfire danger assess-
ments is highlighted by the increased growing-season wildfire 
occurrence and area in Oklahoma in 2011 and 2012 compared 
with prior years (Fig. 7). As spatial coverage of soil moisture data 
increases, due to the proliferation of in situ networks and the 
development of satellite-derived global soil moisture monitoring 
(Ochsner et al., 2013), improved large-scale wildfire danger as-
sessments may be possible.

IMPLICATIONS
In light of our finding that soil moisture strongly affects 

growing-season wildfire size, we recommend that soil moisture be 
included in wildfire danger assessments for live fuels in Oklahoma 
and neighboring rangeland states. During the dormant season, on 
the other hand, when the occurrence of large wildfires was not 
strictly dependent on low FAW, our results support the method-
ology behind current dormant-season wildfire danger assessments 
that rely on weather variables known to drive wildfires in dead 
fuels. Currently, no wildfire danger models incorporate soil mois-
ture, but increasing availability makes its inclusion in growing-sea-
son wildfire danger assessments more feasible. Live fuel moisture 
modeling remains one of the key challenges to producing reliable 
wildfire danger assessments, and soil moisture may be a useful sur-
rogate for LFM given their physical coupling. During prolonged 
periods of soil moisture stress, live herbaceous and deciduous 
woody vegetation senesces, transitioning to dead fuel, while live 
evergreen woody vegetation decreases in fuel moisture, both of 
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which can lead to conditions conducive to the spread of wildfire. 
Our findings support this assertion, with the occurrence of large 
wildfires being highly correlated with extreme drought as indicat-
ed by low FAW. The strong soil moisture–growing-season wildfire 
relationship that we observed in Oklahoma likely exists in other 
areas with similar climate and herbaceous vegetation, including 
much of the U.S. Great Plains region. Relative to the more rapidly 
fluctuating weather variables, FAW also exhibits greater temporal 
stability and may therefore have unique potential for forecasting 
wildfire danger.
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